$5/21/19$ Lecture 15 The is premise is satisfied and the calculations are
manageable, you get all the moments of \overline{x} just by computing $4x + 1$ and differentiating it over and $Ex: \mathbb{X} \sim Exporant(\lambda)$ $f_{\overline{X}}(x) = \begin{cases} \lambda e^{-\lambda x} & \text{for } x \ge 0 \\ 0 & \text{else} \end{cases}$ $(\lambda > 0)$ $V_g(t) = E(e^{tX}) = \int_{0}^{\infty} e^{tx} \lambda e^{-\lambda x} dx = \lambda \int_{0}^{\infty} e^{(t-\lambda)x} dx$ This integral is finite only if $+ - \lambda 40$ and $+ 2 \lambda \left(\frac{49 + 1}{- \lambda 0} \right)$
but this means (since $\lambda >0$) that it's definitely
finite in an open interval around 0 (eg. $(-\lambda, \lambda)$) $50 \frac{1}{x}(t)$ exists for 12λ and equals $4x(t) = \lambda \int_{0}^{\infty} (t-x)x dx$ $\frac{1}{\lambda-1}$ Now take the deminitives $E(X') = \frac{d}{dt} \left(\frac{\lambda}{\lambda - t} \right) = \frac{1}{\lambda}$ $\label{eq:1.1} \mathbf{z}^{\prime} = \mathbf{w}^{\prime} - \mathbf{z}^{\prime} = \mathbf{a}, \qquad \qquad \mathbf{z}^{\prime} = \mathbf{z}^{\prime} - \mathbf{a}, \qquad \mathbf{z}^{\prime}$ $\label{eq:R1} \mathbb{E} \left[\begin{array}{cccccccccccc} \mathbb{E} & \mathbb{E} \\ \mathbb{E} & \mathbb{E} \\ \mathbb{E} & \mathbb{E} & \mathbb{E} & \mathbb{E} & \mathbb{E$ $\label{eq:3.1} \left\langle \eta_{\alpha} \right\rangle \$ $E(X^2) = \left(\frac{d^2}{dt^2} \left(\frac{\lambda}{\lambda - \frac{1}{t}}\right)\right)_{\frac{1}{t}} = \frac{2}{\lambda^2}$ $\label{eq:2.1} \mathcal{R}=\mathcal{R}^{\mathcal{R}}\qquad\qquad \mathcal{R}^{\mathcal{R}}\qquad\qquad \mathcal{R}^{\mathcal{R}}\qquad\qquad \mathcal{R}^{\mathcal{R}}\qquad\qquad \mathcal{R}^{\mathcal{R}}\qquad\qquad \mathcal{R}^{\mathcal{R}}\qquad\qquad \mathcal{R}^{\mathcal{R}}\qquad\qquad$ $E(\overline{X}) = \left(\frac{d^3}{d+3} \left(\frac{\lambda}{\lambda-1}\right)\right) = \frac{6}{\lambda^3}$ F positive skew .
(long nght-hqqd tqil) $E(X^4) = \left(\frac{d^4}{dx^4} \left(\frac{\lambda}{\lambda - \lambda}\right)\right)_{\lambda = 0} = \frac{24}{\lambda^4}$ $\mathcal{F} = \{ \mathbf{x}_1, \ldots, \mathbf{\hat{x}} \} \qquad \text{or} \qquad \mathbf{x}_1, \ldots, \mathbf{x}_{n-1}, \mathbf{x}_n, \ldots, \mathbf{x}_n, \ldots, \mathbf{x}_n \}$ $\mathcal{A}=\mathcal{A}^{\mathcal{A}}$, where $\mathcal{A}^{\mathcal{A}}=\mathcal{A}^{\mathcal{A}}$, where $\mathcal{A}^{\mathcal{A}}=\mathcal{A}^{\mathcal{A}}$ $\label{eq:3.1} \begin{array}{cccccccccccccc} \mathcal{W} & \vdash & \mathcal{V} & \cdots & \mathcal{W} & \cdots & \mathcal{V} \end{array}$ Evidently $E(\overline{X}^k) = \frac{k!}{\lambda^k}$ $\mathbf{A}^{\dagger} = \mathbf{A}^{\dagger} \mathbf{A}^{\dagger} \mathbf{A}^{\dagger} + \mathbf{A}^{\dagger} \mathbf{A}^{\dagger} \mathbf{A}^{\dagger} + \mathbf{A}^{\dagger} \mathbf{A}^{\dagger} \mathbf{A}^{\dagger} + \mathbf{A}^{\dagger} \mathbf{A}^{\dagger} \mathbf{A}^{\dagger} \mathbf{A}^{\dagger}$ والمناهاء الانتقار فللمائي $\mathbb{E}\left[\left\| \mathbf{x}^{\top} \right\|_{\infty}^{2} \right] = \left\| \mathbf{x}^{\top} \right\|_{\infty}^{2} = \left\| \mathbf{x}^{\top} \right\|_{\infty}^{2} \leq \left\| \mathbf{x}^{\top} \right\|_{\infty}^{2} \leq \left\| \mathbf{x}^{\top} \right\|_{\infty}^{2}$

$$
S_{0} V(X) = E(X^{2}) - [E(X)]^{2} = \frac{2}{\lambda^{2}} - \frac{1}{\lambda^{2}} = \frac{1}{\lambda^{2}}
$$

\nand $50 (X) = \frac{1}{\lambda}$
\n
$$
\frac{G_{0} \cdot 56}{\lambda} = \frac{1}{\lambda}
$$

\n
$$
\frac{G_{0} \cdot 56}{\lambda} = \frac{1}{\lambda^{2}}
$$

\n
$$
= 6X + b
$$

\n
$$
T = 6X + b
$$

\n
$$
(a, b \cos 356 + 14) = 12
$$

\n
$$
T = 6X + b
$$

\n
$$
T = \frac{1}{2}A + c
$$

\n
$$
T = \frac{1}{2}A + c
$$

\n
$$
T = \frac{1}{2}A + c
$$

\n
$$
T = \frac{1}{2}(\frac{1}{2}A) + c
$$

\n
$$
T = \frac{1}{2}(\frac{1}{2}
$$

 $\hat{\epsilon}$

 $\overline{}$

Ì,

 $\bar{ }$

 ϵ \bar{r}

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array}$ $\overline{}$

 μ \bar{a} ł,

 $\bar{\bar{\bar{x}}}$ $\bar{\epsilon}$

 \sim $\hat{\mathbf{x}}$

 $\hat{\boldsymbol{\epsilon}}$

 $\bar{\gamma}$

 $\overline{}$

X

 \bar{b} Δ

 $\hat{\mathbf{z}}$

 \setminus

 Ω ef: $E[(\hat{x} - \overline{x})^2]$ is called the mean squared error (MSE) Small theorem: The i that minimizes MSEis R = E(8) . 5 mall theorem: T_{12} $2+1$, $\overline{2}$ $\overline{2}$ $Proof: E((x-\bar{x})^2) = E(x^2 - 2x\bar{x} + \bar{x}^2)$ $=$ 2^{2} $22 \in (\mathbb{Z})$ + $\in (\mathbb{Z}^{2})$ This is a quadratic function of ? $\overline{dx} = \int (\hat{x} - \hat{x})^2 |_{\theta=2}^{\infty}$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ = $2x - 2C(8) - 0$ and $\frac{\partial^2}{\partial x^2}$ = Q, with the school $\frac{\partial^2}{\partial y^2}$ d_{χ}^2 - 2 10 30 $\zeta(\chi)$ is a $MSE(\hat{x}) = E(\hat{x}-\mathbb{E})^2 = V(\hat{x}) + [B\hat{a}s(\hat{x})]^2$ 66 the chain 24 $T = \alpha \alpha$, $\gamma - C$ GChieves O biss and h s the ħ that minimizes MAECE) is (a/the) mechan mg · A different criterian: find & such that $L[\hat{x}-\hat{x}]$ is small $\mathbf{P}_{\mathbf{C}}$ is a median of the dist.of 8 is a median of the dist.of 8 is a median of the dist.of 8 is a median of 8 is a median of the dist.of 8 is a median of the dist.of 8 is a median of 8 is a median of 8 is a media $\frac{1}{2}$ $\frac{1$ $5 - 2$ is a prediction for \underline{x} $\underline{\text{Thm}}: \mathbb{X} \sim L/\text{finite mean} \sim \mathbb{X}$ Let $m_{\overline{X}}$ be $(a/4hc)$ median of \overline{X}
 \rightarrow the Ω links in the line Medism def: $X \sim$ are \sim mber in such that $P(X=m) \geq \frac{1}{2}$ and $P(\overline{X} \geq m) \geq \frac{1}{2}$ is a median of the dist of \overline{X} Ex: non unique medran

 $(Y \times \mathcal{F})$ of Σ $E = [L] - [L \Delta Z] - M_{\chi} M_{\pi}$ \leq easie $5 \times$ $2 \times$ $\overline{}$ $\frac{1}{3}$ Sutticient condition for $C(\overline{X},\overline{Z})$ to exist $\sigma_{\overline{X}}^2$ 420 and $\sigma_{\overline{Y}}^2$ 420 $E(S)$ Coverience is veloped and schooling complete $E(S)$ $5 + \overline{X}$ and \overline{Y} $Ex: Z = edvcathom 18$ $\sum_{i=1}^n a_i$ and $\sum_{i=1}^n a_i$ is the humidity ($\sum_{i=1}^n a_i$) . \overline{Z} = yearly income (s) C/T (-1) corresponding ϵ to the show that if and if and if and if and if all ϵ a tensor dany temperature in ? $T = max$ deily relative humidity (%) $\frac{16}{10}$ such $\frac{16}{10}$ in $\frac{16}{10}$ such as SC = 80 $\frac{3}{5}$ (+32) $(Y \times I =)$ SDSS)Easy to show that if a b are fixed constants then $C(G\overline{X}+b,\overline{Z})=cC(\overline{X},\overline{Z})$ so $C(\overline{S},\overline{Z})=1.8 \cdot C(\overline{X},\overline{Z})$ You can make the association between temperature & relative humidity seem larger just by switching from a to of Easy fix: Def: The process of converting a r X to standard units (SU) is a chieved with the linear transformation $\overline{X}' = \underline{X} - E(\overline{X}) = \frac{\overline{X} - M \overline{X}}{6 \overline{X}}$

A's long as 06 g_x cos this is a meaningful definition
\n
$$
E(X') = 0 \quad V(X') = 1 = S0(X')
$$
\n
$$
Qef: X Y \sim \text{with a finite variance of } x \text{ and } x \text{ gives}
$$
\n
$$
S = \text{and } Z \text{ is } \rho(X, Y) = E\left[\left(\frac{X - \mu_Y}{x}\right) \cdot \left(\frac{Z - \mu_Y}{x}\right)\right]
$$
\n
$$
= \frac{C(X, Y)}{x} = \frac{C\left(\frac{X - \mu_Y}{x}\right) \cdot \left(\frac{Z - \mu_Y}{x}\right)}{x}
$$
\n
$$
= \frac{C(X, Y)}{x} = \frac{C\left(\frac{X - \mu_Y}{x}\right) \cdot \left(\frac{Z - \mu_Y}{x}\right)}{x}
$$
\n
$$
= \frac{C(X, Y)}{x} = \frac{C(X, Y)}{x}
$$
\n
$$
= \frac{C(X, Y)}{x} = \frac{C(X, Y)}{x}
$$
\n
$$
= \frac{C(X, Y)}{x}
$$
\n
$$
P(xX + h_X) \geq e(x), \text{ if } h_X \geq 0 \text{ for } x \text{ is a positive constant, } x \text{ is }
$$

ł,

50 indégeotone (implies 0 countation, but
\n(inbersingly) not the converse:
\nEx:
$$
X \sim Uniform\{-1,0,1\} \leq \frac{1}{2} \times 2
$$
 (x)=0
\n $\Rightarrow X, Z$ clearly dependent since X completely
\ndetemines Z, but $E(XZ) = E(X^3) = E(X) = 0$
\nSince X and X^3 are identically distributed
\n $C(X, X) = E(XZ) - E(X) \cdot E(Y) = 0$
\nSo $\rho(X, Z) = \frac{C(X, X)}{\sigma_X \sigma_Y} = 0$ and $\frac{X}{\sigma_X} \frac{1}{\sigma_X \sigma_Y} = 0$
\nSo $\rho(X, Z) = \frac{C(X, X)}{\sigma_X \sigma_Y} = 0$ and $\frac{X}{\sigma_X} \frac{1}{\sigma_X \sigma_Y} = 1$
\nSo $\rho(X, Z) = \frac{C(X, X)}{\sigma_X \sigma_Y} = \frac{X}{\sigma_X \sigma_Y} = 1$
\nSo $\rho(X, Z) = -1$
\nSo $\rho(X, Z) = 1$
\n $\rho(X, Z) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac$

 $\label{eq:1.1} \mathcal{A}=\frac{1}{2}\left(\mathcal{A}^{(1)}\right)^{2}+\mathcal{A}^{(2)}\left(\mathcal{A}^{(1)}\right)^{2}+\mathcal{A}^{(2)}\left(\mathcal{A}^{(1)}\right)^{2}+\mathcal{A}^{(2)}\left(\mathcal{A}^{(1)}\right)^{2}+\mathcal{A}^{(2)}\left(\mathcal{A}^{(1)}\right)^{2}+\mathcal{A}^{(2)}\left(\mathcal{A}^{(1)}\right)^{2}+\mathcal{A}^{(2)}\left(\mathcal{A}^{(1)}\right)^{2}+\mathcal{A}^{(2)}\left(\$

 \mathcal{L} if \mathcal{L} . In such that (8;. \mathcal{L}) incorrested that (8;. \mathcal{L}) incorrested to \mathcal{L} $f_{\alpha}(G)$ if χ , \ldots , χ_{α} fick t f_{0} all $1 \leq i \neq j \leq u$ \Rightarrow $V(\sum_{i=1}^{n} \mathbf{X}_{i}) = \sum_{i=1}^{n} V(\mathbf{X}_{i})$ (7) $\rho(\mathbf{X}, \mathbf{Y})$ =-1 $\rho(\overline{X}, \overline{Y}) = 0$ ρ $(\overline{X}, \overline{Y}) = +1$ Y_1 $\frac{1}{\sqrt{2\pi}}$ \mathcal{L} $\sum_{i=1}^n$ $\frac{1}{2}$ $\frac{1}{2}$ is $\frac{1}{2}$ in line $\frac{1}{2}$ is $\frac{1}{2}$ in line $\frac{1}{2}$ is $\frac{1}{2}$ in line $\frac{1}{2}$ is $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$ is $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$ is $\frac{1}{2}$ in $\frac{1}{2}$ in f_{scrt} for f_{scrt}
 f_{scrt} for f_{scrt} \rightarrow f_{scrt} f_{scrt} paints in scritterplat S cc tterplot semple from sample from $f_{\overline{X},\overline{Y}}(X,\overline{Y})$ all fall on line C ase 2 $f_{\overline{X}\overline{Y}}(x,y)$ with positive slope all fall on line $(mot necessarily r1)$ with negative
Slope (not Nonlineaty R (0.863) related roughly $-1)$. Then the theorem then the theorem then then then then then then the theorem then the theorem the th Conditional Expectation $\overline{X}, \overline{Z}$ related rus (not independent): then there is information $ln X$ for predicting \overline{Y} We should be able to find some function $d: \mathbb{R} \rightarrow \mathbb{R}$ such that $d(\overline{x})$ is "close" in some sense to $\mathcal I$ -what is the optimal d ? Galton divided the elliptical scatterplot up into a bunch of Galton ex. Galton divided the elliptical scatterplot up into a bunch of Marrow vertical strips e.g. the one over $x *_{\alpha r} * b$ $\frac{1}{2}$ over x_2^* The points in the vertical strip over x_1^* are a random sample $f_{\overline{y}|\overline{x}}(y) \times = x_{2}^{*}$ ata a ngalimpinas α , α , β , β , β , β , β

The number n^3 that minimizes the mean squared
error (MSE) $E[(n- \overline{E})^2]$ of n^3 as a prediction $f_{\alpha r}$ $\overline{\omega}$ is $\hat{\omega}$ = $E(\overline{\omega})$

So he adopted MSE as his measure of "close" and Concluded that the C that minimizes τ that the use that the use that τ $\mathbb{R}^n \times \mathbb{R}^n$ $\frac{1}{2}$ of the ru $(\frac{y}{x} | \hat{x} = x_i^{*})$ \mathcal{D} the \mathcal{D} the r $\sum_{i=1}^n \sum_{i=1}^n \sum_{j=1}^n x_j x_j$ $\mathcal{C}_{\mathbf{S}}$ order . $\sum_{i=1}^{\infty}$ $e^{i\theta}$ expectation of the conditional distribution $f_{\mathcal{I}|\mathcal{X}}(\gamma)\times)$ of \mathcal{I} given $\mathcal{I}=\times$ $E(Z|x) = \int_X \gamma \frac{f}{Z} i \frac{1}{Z} (y|x) dy$ for continuous $(Z1Z=x)$ and $E(\Sigma | x) = \sum_{\epsilon_{11}y} \gamma \ell_{\Sigma | \Sigma}(y|x)$ for discrete $(\Sigma | \Sigma = x)$ S_{s} far, $E(Z|x)$ is just a constant, equal to the conditional mean of $\mathcal I$ when $\mathcal I$ is the constant x .

 \overline{D} ef: h(x) $\frac{1}{2}$ E($\overline{\chi}$) $\overline{\chi}$ =x) c_1 is the I given \overline{R}