Binomial Distributions

\(Y \): # of success in \(n \) success/failure independent and identically distributed tools, each one with probability \(p \) of success

\[Y \sim \text{Binomial} \left(n, p \right) \quad n = \# \text{ of trials } = 0, 1, 2, 3, \ldots \]

\(p \) = the probability of success \(p \in [0, 1] \)

Ex:\(n = 5 \) \(p = \frac{1}{2} \) \(Y \sim \text{Binomial} \left(5, \frac{1}{2} \right) \)

\[P(Y = 0) = \frac{1}{32} \]

\[P(Y = 1) = \frac{5}{32} \]

\[P(Y = 2) = \frac{10}{32} \]

\[P(Y = 3) = \frac{10}{32} \]

\[P(Y = 4) = \frac{5}{32} \]

\[P(Y = 5) = \frac{1}{32} \]

These add up to 1

\[Y \sim \text{Binomial} \left(n, p \right) \quad P(Y = i) = 0 \quad \forall i > n \quad (\text{For every } i \text{ greater than } n) \]

\[P(Y = 0) = (1 - p)^n \quad 0: \text{x} \text{x} \text{x} \text{x} \ldots \text{x} \]

\[P(Y = 1) = (1 - p)^{n-1} \cdot p \quad 1: \text{y} \text{x} \text{x} \text{x} \ldots \text{x} \]
$P(Y=i) = p^i(1-p)^{n-i}$

Positive skew: histogram is changed to the left side
Negative skew: histogram is changed to the right side
No skew: symmetrical histogram