Dr. Richard Dell

\[P(\text{birth occurs at first}) \]
\[= P(HH) = P(H) \times P(H) \]
\[= P(H) \times P(H) \]
\[= \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} \]

So, the null theory is "true" on \(H^* \)

\[P(\text{all 4 births occur}) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16} \times \frac{1}{16} \]

It is highly unlikely, therefore, that \(H^* \) is probably false.

Alternative hypothesis

This idea is a probability version or proof by contradiction

\[(A_1 \cup A_2 \cup \ldots \cup A_n) = \bigcup_{i=1}^{n} A_i \]

Union

\[A_1, A_2, \ldots, A_n \] are all in \(C \) then so is \(\bigcup_{i=1}^{n} A_i \)

For any event \(A \):

\[(A')' = A \]

\[\phi^* = \mathcal{S} \] and \(\mathcal{S}^* = \phi \)

\(A \cup B = (B \cup A) \)

\(A \cup B \cup C = (A \cup B) \cup C = A \cup (B \cup C) \)

\[A \cap A \cap \ldots \cap A = \bigcap_{i=1}^{n} A_i \]

Intersection

\[\mathcal{S} = \{s_1, s_2, \ldots, s_n\} \]

partition of \(S \)

\[P(\mathcal{A}) = P(A_1 \text{ and } B_1) + \ldots + P(A_1 \text{ and } B_n) \]

axiom 1: for all events \(A \in C, P(A) \geq 0 \)

axiom 2: \(P(\emptyset) = 0 \)

axiom 3: For disjoint \(A_i \) events \(\sum_{i=1}^{n} P(A_i) \) is the same as \(P(A) \)

**if \(A_i = A_j \) then \(P(A_i) = P(A_j) \) the set \(P(A_i) \) is countable additive.