We know:
- \(P(B) = 0.01 \)
- \(P(\Theta | G) = 0.97 \)
- \(P(\Theta | B) = 0.98 \)

Solution:

Method 1:

2x2 table

Bayes's Theorem in odds form:

\[
\frac{P(B | \Theta)}{P(\Theta | B)} = \left(\frac{P(B)}{P(\Theta | B)} \right) \cdot \left(\frac{P(\Theta | B)}{P(\Theta | B)} \right) \cdot \left(\frac{P(\Theta | B)}{P(\Theta | B)} \right)
\]

(\text{posterior odds in favor of } B) \rightarrow (\text{prior odds in favor of } B) \cdot (\text{Bayes factor})

We want \(P(B | \Theta) \)

Only 7 system days (unknown) (data)

2 possible truth states \((B, G)\)

Method 2:

Earlier we showed that:

(likelihood ratio)
excellent, we know all the probability. So let's compute:

$$P(B) = 0.01$$

$$P(\neg B) = P(G) = 0.99$$

$$P(\Theta | B) = 0.98$$

$$P(\Theta | \neg B) = 1 - P(\Theta | B) = 1 - 0.97 = 0.03$$

From which

$$P = \frac{0}{140} = \frac{98}{297}$$

So the odds in favor of B are $\frac{98}{98+297} = 0.25$ before.
Bayes' Theorem is probability.

\[p(\theta | Y) = \frac{p(Y | \theta) p(\theta)}{p(Y)} \]

When we have a prior model, we can use Bayes' Theorem to compute the posterior model. The posterior is proportional to the product of the likelihood and the prior.

Bayesian inference is a search for the posterior over the unknown parameter \(\theta \).
\[P(\Theta) = \frac{\mathbb{P}(G) \cdot P(\Theta|G) + \mathbb{P}(B) \cdot P(\Theta|B)}{\mathbb{P}(\Theta)} \]

\[= (0.99) \left[1 - P(\Theta|G) \right] (0.01) (0.98) \]

\[= (0.99)(0.03) + (0.01)(0.98) \]

\[= (0.0297) + (0.0098) = 0.0395 \]

So

\[P(B|\Theta) = \frac{P(B) \cdot P(\Theta|B)}{P(\Theta)} \]

Finally

\[DG \]

ch. 3

Random variables

\[P(I = y) \]

\[\uparrow \text{ random variable} \]

\[\text{(process)} \]

\[\uparrow \text{ possible value of } I \]

\[\text{(outcome)} \]

\[(potential) \]

\[(kinetic) \]
Graph theory

- 4 nodes
- 6 edges
- \mathbb{E}: dependent

5 nodes
- 4 edges

n nodes \rightarrow # data points

\[
\binom{n}{2} \text{ edges} = \frac{n(n-1)}{2}
\]

$= O(n^2)$

This is of order n^2

$= \text{Big oh of } n^2$

in this model, the past and the future are conditionally independent given θ

$O(n^2)$