Clinical trial example, continued

Let \(N_c + n_T \) people \(\{ \} \) who are similar in all relevant ways to the population \(\{ \text{all adult patients with disease A} \} \)
and who consent to participate in your clinical trial be randomized, \(N_c \) to the control group and \(n_T \) to the treatment group.

Outcome of interest is dichotomous:

Let \(\theta \) be the proportion of successes you would have seen if you could have put (everybody in \(P \)) into your treatment group; \(\theta \) is unknown.

Let \(s_i = \begin{cases} 1 & \text{if patient } i \text{ in the actual treatment} \text{ group had a success} \\ 0 & \text{otherwise} \end{cases} \)
Then the rv's \((S_i | \Theta)\) are IID Bernoulli(\(\Theta\))

and the rv \(S = \sum_{i=1}^{n_\tau} S_i\) has a conditional

Binomial dist: \((S_1 | \Theta_1) \sim \text{Binomial}(n_\tau, \Theta)\)

It's meaningful to talk about the conditional expectation rv \(E(S_1 | \Theta) = n_\tau \Theta\) (a linear function of \(\Theta\))

and - via Bayes' Theorem - it's even more meaningful to talk about the conditional expectation rv \(E(\Theta | S)\) (more about this later)

and the constant \(E(\Theta | S = s)\).

Remember the law of total probability?

\[P(\Theta) = \sum_{i=1}^{n_\tau} P(\Theta_i) P(A | \Theta_i) \]

Important consequence of the def. of conditional expectation.
Continuous version of LTP \(\mathbb{E} \), \(\mathbb{I} \) continuous for which all named densities exist. Let

\[
\frac{f_{\mathbb{E}}(y)}{P(A)} = \frac{\int_{-\infty}^{\infty} f_{\mathbb{E}}(x) \cdot f_{\mathbb{I} \mid \mathbb{E}}(y \mid x) \, dx}{P(A)}.
\]

Earlier we agreed that, by definition,

\[
E(\mathbb{I} \mid x) = \int_{-\infty}^{\infty} \gamma \cdot f_{\mathbb{I} \mid \mathbb{E}}(y \mid x) \, dy
\]

so watch the following slightly magical.

\[
E(\mathbb{I}) = \int_{-\infty}^{\infty} \gamma \cdot f_{\mathbb{I} \mid x}(y) \, dy
\]

\[
= \int_{-\infty}^{\infty} \gamma \left[\int_{-\infty}^{\infty} f_{\mathbb{I} \mid \mathbb{E}}(y \mid x) \, dy \right] f_{\mathbb{E}}(x) \, dx
\]
\[= \int_{-\infty}^{\infty} f_{Z|X}(x) \cdot E(Z|X) \; dx, \] and this is of the form \(\{ \text{weighted average of } E(Z|X) \} \) with \(f_{Z|X}(x) \) as the weights.

Recall that continuous for any \(\mathbb{R} \) in \(\mathbb{R}^n \), we have:

\[
E(W) = \int_{-\infty}^{\infty} w f_{\mathbf{w}}(w) \; dw
\]

and (Law of Total Expectation)

\[
E[E(W)] = \int_{-\infty}^{\infty} h(w) f_{\mathbf{w}}(w) \; dw
\]

This is referred to as part 1 of the double expectation theorem; strictly, IS don't even mention that name, calling it instead the LTV for expectations.
I need to postpone examples of these conditional expectation calculations until we've covered more standard distributions.

\[X, Y \text{ rv s.t. } f_{X|Y}(y|x) \text{ exists} \Rightarrow \text{ it makes sense to speak not only of } E(Y|X), \text{ the mean of } f_{X|Y}(y|x), \text{ but also of the variance of that dist.} \]

\[\text{Def } \quad V(Y|X) = E \left[\frac{1}{X} \left[Y - E(Y|X) \right]^2 \right] \overset{X}{=} g(x) \]

is called the conditional variance of \(Y \) given \(X = x \), and the \(Y \) rv \(V(Y|X) \) is just \(g(x) \), the conditional variance of \(Y \) given \(X \).
The payoff (formalizing Galton’s intuition)

from all of this theorem \(X, Y \) related rv \(X \)

want to use some function \(\hat{Y} = \delta(Y) \) to predict \(Y \) from \(X \) \(\rightarrow \)

the prediction \(\hat{Y} = \delta(Y) \) that minimizes

the MSE \(E(Y - \hat{Y})^2 = E\left[(Y - \delta(Y))^2 \right] \)

is \(\hat{Y} = \delta(Y) = E(Y | X) \), the conditional

expectation of \(Y \) given \(X \). Part 2

\(X, Y \) rv such that all of the

following expressions exist, \(\rightarrow \)

\(V(Y) = E_X \left[V(Y | X) \right] \)

\(+ V_X \left[E(Y | X) \right] \) (Eqn)
Imagine a 2-port game:

Stage 1 Predict \tilde{Y} without knowing X. Well, if you buy into MSE as your measure of "goodness" of a prediction, we know that you should predict $\tilde{Y} = \frac{\hat{\mu}_Y}{\sigma} = E(Y)$

and your resulting MSE will be:

$$E[(\tilde{Y} - \frac{\hat{\mu}_Y}{\sigma})^2] = \sqrt{\text{Var}(\tilde{Y})} = \frac{\sigma}{\hat{\mu}_Y}$$

Stage 2 Observe Y

Now predict \hat{Y}

Let's say $\hat{Y} = x^x$. Then we know the MSE-optimal prediction is $\hat{Y} = E(Y|X=x)$
The bold expectation theorem says
\[\mathbb{E} \{ X \} = \mathbb{E} \{ Y \} \]

The second part of the rule is
\[\text{Your expected value of } Z \]

The second part of the equation
\[\text{Your expected value of } Y \]

The second part of the equation
\[\text{Your expected value of } X \]

From the variance point of someone thinking
\[\mathbb{E} \{ Z \mid X \} \]

From the variance point of someone thinking
\[\mathbb{E} \{ Z \mid X \} \]

From the variance point of someone thinking
\[\mathbb{E} \{ Z \mid X \} \]

From the variance point of someone thinking
\[\mathbb{E} \{ Z \mid X \} \]

From the variance point of someone thinking
\[\mathbb{E} \{ Z \mid X \} \]

From the variance point of someone thinking
\[\mathbb{E} \{ Z \mid X \} \]

From the variance point of someone thinking
\[\mathbb{E} \{ Z \mid X \} \]
But since variances are always non-negative,

\[\text{Var}[\mathbb{E}(\hat{Y} | \tilde{X})] \geq 0, \]

so

\[\mathbb{E}[\text{Var}(\hat{Y} | \tilde{X})] + \text{Var}[\mathbb{E}(\hat{Y} | \tilde{X})] \geq \mathbb{E}[\text{Var}(\tilde{Y} | \tilde{X})] \]

Thus you always expect your predictive accuracy to get better (or at least stay the same) when you use \(\hat{Y}(\tilde{X}, \bar{X}) \) to predict \(\tilde{Y} \). Another complete switch is subject utility.

Q: How to take action sensibly when the consequences are uncertain?
A: There is a theory of optimal action under uncertainty; it's called Bayesian decision theory—a concept called utility is central to this theory. The theory takes its simplest form when comparing gambles.

Example

If \(X \) has
\[
\begin{align*}
 f_X(x) &= \begin{cases}
 \frac{1}{2} & x = -350 \\
 \frac{1}{2} & x = +8500 \\
 0 & \text{else}
 \end{cases}
\end{align*}
\]

Suppose \(X \) is your net gain from gamble \(A \),

If \(Y \) has
\[
\begin{align*}
 f_Y(y) &= \begin{cases}
 \frac{1}{3} & y = 40 \\
 \frac{1}{3} & y = 50 \\
 \frac{1}{3} & y = 60 \\
 0 & \text{else}
 \end{cases}
\end{align*}
\]

and \(Y \) is your net gain from gamble \(B \).

So is \(A \) automatically better?

\[E(X) = 875 \], \[E(Y) = 850 \] then \(B \)?
Note that with \Box you're guaranteed to win at least 840, while \Diamond has no such guarantee; is \Diamond still automatically better? [for you] Non \Box? A risk-averse person would grab \Box quickly; a risk-seeking person would pick \Diamond.

Evidently something more than just computing $E(X)$, $E(Y)$ is going on.

If def. Your utility function $U(x)$ of utility is that function which assigns to each possible net gain $-\infty < x < \infty$ a real $U(x)$ representing the value to you of gaining x.
If x is money, why not just use \(u(x) = x \)?

A: lovely. Subtle answer first

(utility: money)

Supplied by Daniel Bernoulli (1700 - 1782), a Swiss mathematician related to Jacob Bernoulli (1654 - 1705), for whom the Bernoulli distribution was named.

Daniel B: If your entire net worth is (say) $10, then the value to you of a new $1 is much greater than if your entire net worth is (say) $1,000,000; thus the utility of money is sublinear (meaning that it doesn't grow with \(x \) as fast as \(f(x) = x \) does).

Daniel B proposed one particular sublinear function for utility.
You prefer Sanville π to Sanville π_1 and $\bar{\pi}$.

if $\mathbb{E}[U(\pi)] < \mathbb{E}[U(\pi_1)]$ then $\bar{\pi}$ is your utility function.

if $\mathbb{E}[U(\pi)] = \mathbb{E}[U(\pi_1)]$ then $\bar{\pi}$ is your utility function.

You are said to choose utility

by expected utility maximization.

The idea that one or more of us.

The idea goes back at least to

Aristotle (384-322 BCE)

although

$u(x) = 1 + \log(x)$ for $x > 0$.

Let $u(k) = 1/k$ for $k > 0$.

$u(0) = 0$.

$u(x) = 0$ for $x = 0$

$u(x) = x$ for $x > 0$.

$u(x)$ never.
MEU first explored in depth by British philosopher economist Frank Ramsey (1903 - 1930), who died at age 26 of liver failure (hepatitis).

Theorem (von Neumann – Morgenstern, 1947): Under 4 reasonable axioms, MEU is the best you can do.

Suppose you bought a single $2 ticket in the Power Ball lottery examined in Take-Home Test problem 2: you drew the winning numbers on 30 Jul 2016, for which the grand prize was $487 million. Let X be the amount you will win (think of X before the drawing).
<table>
<thead>
<tr>
<th>Match</th>
<th>x</th>
<th>(P(X=x))</th>
<th>(x \cdot P(X=x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5W, 1R</td>
<td>$487,000,000$</td>
<td>(\frac{1}{292,201,338})</td>
<td>1.667</td>
</tr>
<tr>
<td>5W, op</td>
<td>$1,000,000$</td>
<td>(\frac{1}{11,658,053,52})</td>
<td>0.086</td>
</tr>
<tr>
<td>4W, 1R</td>
<td>$850,000$</td>
<td>(\frac{1}{943,129,18})</td>
<td>0.055</td>
</tr>
<tr>
<td>4W, op</td>
<td>100</td>
<td>(\frac{1}{136428,7})</td>
<td>0.003</td>
</tr>
<tr>
<td>3W, 1R</td>
<td>100</td>
<td>(\frac{1}{114,494,01})</td>
<td>0.007</td>
</tr>
<tr>
<td>3W, op</td>
<td>7</td>
<td>(\frac{1}{200,000})</td>
<td>0.0004</td>
</tr>
<tr>
<td>2W, 1R</td>
<td>7</td>
<td>(\frac{1}{701,33})</td>
<td>0.0010</td>
</tr>
<tr>
<td>1W, 1R</td>
<td>4</td>
<td>(\frac{1}{91,98})</td>
<td>0.043</td>
</tr>
<tr>
<td>0W, 1R</td>
<td>4</td>
<td>(\frac{1}{38,32})</td>
<td>0.104</td>
</tr>
</tbody>
</table>

\[E(X) = \sum_{x} x \cdot P(X=x) = \$1.99\]

- \(X\) has 9 possible values \(x\) (discrete).

So \(E(X) = \sum_{x} x \cdot P(X=x) = \$1.99\).

9 possibilities

\(81.99\) (!)
Before the drawing, someone offers you x_0 for your ticket; should you sell?

A: With $U(x)$ as your utility function, your expected gain if you keep the ticket is $E[U(x)]$; if for you $U(x) = x$ (utility = money) then $E(U(x)) = 1.99$

Action 1 (sell): you gain x_0 for sure

Action 2 (keep): your expected utility is $E[U(x)]$

Under MEU you should sell if $U(x_0) > E[U(x)]$

If $U(x) = x$ for you then your optimal action is (sell if offered more than 1.99).
The monetary value to you of the disruption of your life that would ensue with action (23 May 19)

\(\sqrt{ } \) A catalog of useful distributions

(Sch. 5) Case 1: Discrete

Bemoulli

\(X \sim \text{Bemoulli}(p), \quad 0 < p < 1, \quad \text{if} \)

\(f_X(x) = \begin{cases} 0 & \text{else} \\ p & \text{for } x = 1 \\ (1-p) & \text{otherwise} \end{cases} \)

\(E(X) = p \)

\(\mu_X(t) = p e^t + (1-p) \) for all \(-\infty < t < \infty \)

\(\text{Var}(X) = p(1-p) \)

\(\text{SD}(X) = \sqrt{p(1-p)} \)